Counterfactual Debiasing for Fact Verification

Weizhi Xu, Qiang Liu, Shu Wu, Liang Wang

Main: NLP Applications Main-poster Paper

Session 1: NLP Applications (Virtual Poster)
Conference Room: Pier 7&8
Conference Time: July 10, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 10, Session 1 (15:00-16:30 UTC)
Keywords: fact checking, rumour/misinformation detection
TLDR: Fact verification aims to automatically judge the veracity of a claim according to several pieces of evidence. Due to the manual construction of datasets, spurious correlations between claim patterns and its veracity (i.e., biases) inevitably exist. Recent studies show that models usually learn such...
You can open the #paper-P4718 channel in a separate window.
Abstract: Fact verification aims to automatically judge the veracity of a claim according to several pieces of evidence. Due to the manual construction of datasets, spurious correlations between claim patterns and its veracity (i.e., biases) inevitably exist. Recent studies show that models usually learn such biases instead of understanding the semantic relationship between the claim and evidence. Existing debiasing works can be roughly divided into data-augmentation-based and weight-regularization-based pipeline, where the former is inflexible and the latter relies on the uncertain output on the training stage. Unlike previous works, we propose a novel method from a counterfactual view, namely CLEVER, which is augmentation-free and mitigates biases on the inference stage. Specifically, we train a claim-evidence fusion model and a claim-only model independently. Then, we obtain the final prediction via subtracting output of the claim-only model from output of the claim-evidence fusion model, which counteracts biases in two outputs so that the unbiased part is highlighted. Comprehensive experiments on several datasets have demonstrated the effectiveness of CLEVER.