AD-KD: Attribution-Driven Knowledge Distillation for Language Model Compression

Siyue Wu, Hongzhan Chen, Xiaojun Quan, Qifan Wang, Rui Wang

Main: Machine Learning for NLP Main-poster Paper

Session 7: Machine Learning for NLP (Virtual Poster)
Conference Room: Pier 7&8
Conference Time: July 12, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 12, Session 7 (15:00-16:30 UTC)
Keywords: model compression methods
TLDR: Knowledge distillation has attracted a great deal of interest recently to compress large language models. However, existing knowledge distillation methods suffer from two limitations. First, the student model simply imitates the teacher's behavior while ignoring the reasoning behind it. Second, thes...
You can open the #paper-P486 channel in a separate window.
Abstract: Knowledge distillation has attracted a great deal of interest recently to compress large language models. However, existing knowledge distillation methods suffer from two limitations. First, the student model simply imitates the teacher's behavior while ignoring the reasoning behind it. Second, these methods usually focus on the transfer of sophisticated model-specific knowledge but overlook data-specific knowledge. In this paper, we present a novel attribution-driven knowledge distillation approach, which explores the token-level rationale behind the teacher model based on Integrated Gradients (IG) and transfers attribution knowledge to the student model. To enhance the knowledge transfer of model reasoning and generalization, we further explore multi-view attribution distillation on all potential decisions of the teacher. Comprehensive experiments are conducted with BERT on the GLUE benchmark. The experimental results demonstrate the superior performance of our approach to several state-of-the-art methods.