SpeechMatrix: A Large-Scale Mined Corpus of Multilingual Speech-to-Speech Translations

Paul-Ambroise Augustin Duquenne, Hongyu Gong, Ning Dong, Jingfei Du, Ann Lee, Vedanuj Goswami, Changhan Wang, Juan Pino, Benoît Sagot, Holger Schwenk

Main: Speech and Multimodality Main-poster Paper

Poster Session 7: Speech and Multimodality (Poster)
Conference Room: Frontenac Ballroom and Queen's Quay
Conference Time: July 12, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 12, Poster Session 7 (15:00-16:30 UTC)
Keywords: spoken language translation
TLDR: We present SpeechMatrix, a large-scale multilingual corpus of speech-to-speech translations mined from real speech of European Parliament recordings. It contains speech alignments in 136 language pairs with a total of 418 thousand hours of speech. To evaluate the quality of this parallel speech, we ...
You can open the #paper-P5600 channel in a separate window.
Abstract: We present SpeechMatrix, a large-scale multilingual corpus of speech-to-speech translations mined from real speech of European Parliament recordings. It contains speech alignments in 136 language pairs with a total of 418 thousand hours of speech. To evaluate the quality of this parallel speech, we train bilingual speech-to-speech translation models on mined data only and establish extensive baseline results on EuroParl-ST, VoxPopuli and FLEURS test sets. Enabled by the multilinguality of SpeechMatrix, we also explore multilingual speech-to-speech translation, a topic which was addressed by few other works. We also demonstrate that model pre-training and sparse scaling using Mixture-of-Experts bring large gains to translation performance. The mined data and models will be publicly released