Exploring the Capacity of Pretrained Language Models for Reasoning about Actions and Change
Weinan He, Canming Huang, Zhanhao Xiao, Yongmei Liu
Main: Resources and Evaluation Main-poster Paper
Session 4: Resources and Evaluation (Virtual Poster)
Conference Room: Pier 7&8
Conference Time: July 11, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 11, 15:00-16:30 UTC / 15:00-16:30 GMT
Keywords:
nlp datasets, evaluation
TLDR:
Reasoning about actions and change (RAC) is essential to understand and interact with the ever-changing environment. Previous AI research has shown the importance of fundamental and indispensable knowledge of actions, i.e., preconditions and effects. However, traditional methods rely on logical form...
You can open the
#paper-P563
channel in a separate window.
Abstract:
Reasoning about actions and change (RAC) is essential to understand and interact with the ever-changing environment. Previous AI research has shown the importance of fundamental and indispensable knowledge of actions, i.e., preconditions and effects. However, traditional methods rely on logical formalization which hinders practical applications. With recent transformer-based language models (LMs), reasoning over text is desirable and seemingly feasible, leading to the question of whether LMs can effectively and efficiently learn to solve RAC problems. We propose four essential RAC tasks as a comprehensive textual benchmark and generate problems in a way that minimizes the influence of other linguistic requirements (e.g., grounding) to focus on RAC. The resulting benchmark, TRAC, encompassing problems of various complexities, facilitates a more granular evaluation of LMs, precisely targeting the structural generalization ability much needed for RAC. Experiments with three high-performing transformers indicate that additional efforts are needed to tackle challenges raised by TRAC.