Tailor: A Soft-Prompt-Based Approach to Attribute-Based Controlled Text Generation
Kexin Yang, Dayiheng Liu, Wenqiang Lei, Baosong Yang, Mingfeng Xue, Boxing Chen, Jun Xie
Main: Generation Main-poster Paper
Session 4: Generation (Virtual Poster)
Conference Room: Pier 7&8
Conference Time: July 11, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 11, Session 4 (15:00-16:30 UTC)
Keywords:
text-to-text generation
TLDR:
Attribute-based Controlled Text Generation (CTG) refers to generating sentences that satisfy desirable attributes (e.g., emotions and topics). Existing work usually utilize fine-tuning or resort to extra attribute classifiers, yet suffer from increases in storage and inference time. To address these...
You can open the
#paper-P5680
channel in a separate window.
Abstract:
Attribute-based Controlled Text Generation (CTG) refers to generating sentences that satisfy desirable attributes (e.g., emotions and topics). Existing work usually utilize fine-tuning or resort to extra attribute classifiers, yet suffer from increases in storage and inference time. To address these concerns, we explore attribute-based CTG in a parameter-efficient manner. In short, the proposed Tailor represents each attribute as a pre-trained continuous vector i.e., single-attribute prompt), which guides the generation of a fixed pre-trained language model (PLM) to satisfy a pre-specified attribute. These prompts can be simply concatenated as a whole for multi-attribute CTG without any re-training. Nevertheless, this may raise problems of fluency downgrading and position sensitivity. To solve this, Tailor provides two solutions to enhance the combination. The former contains a multi-attribute prompt mask and a re-indexing position sequence to bridge the gap between the training (one single-attribute prompt for each task) and the testing stage (concatenating two prompts). The latter introduces a trainable prompt connector to further enhance the combinations. Experiments demonstrate that, only requiring 0.08\% extra training parameters of the GPT-2, Tailor can achieve effective and general improvements on eleven attribute-specific generation tasks.