Fine-tuning Happens in Tiny Subspaces: Exploring Intrinsic Task-specific Subspaces of Pre-trained Language Models
Zhong Zhang, Bang Liu, Junming Shao
Main: Interpretability and Analysis of Models for NLP Main-poster Paper
Session 7: Interpretability and Analysis of Models for NLP (Virtual Poster)
Conference Room: Pier 7&8
Conference Time: July 12, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 12, Session 7 (15:00-16:30 UTC)
Keywords:
knowledge tracing/discovering/inducing
TLDR:
Pre-trained language models (PLMs) are known to be overly parameterized and have significant redundancy, indicating a small degree of freedom of the PLMs. Motivated by the observation, in this paper, we study the problem of re-parameterizing and fine-tuning PLMs from a new perspective: Discovery of ...
You can open the
#paper-P5793
channel in a separate window.
Abstract:
Pre-trained language models (PLMs) are known to be overly parameterized and have significant redundancy, indicating a small degree of freedom of the PLMs. Motivated by the observation, in this paper, we study the problem of re-parameterizing and fine-tuning PLMs from a new perspective: Discovery of intrinsic task-specific subspace. Specifically, by exploiting the dynamics of the fine-tuning process for a given task, the parameter optimization trajectory is learned to uncover its intrinsic task-specific subspace. A key finding is that PLMs can be effectively fine-tuned in the subspace with a small number of free parameters. Beyond, we observe some outlier dimensions emerging during fine-tuning in the subspace. Disabling these dimensions degrades the model performance significantly. This suggests that these dimensions are crucial to induce task-specific knowledge to downstream tasks.