Simple Augmentations of Logical Rules for Neuro-Symbolic Knowledge Graph Completion
Ananjan Nandi, Navdeep Kaur, Parag Singla, Mausam -
Main: Information Extraction Main-poster Paper
Poster Session 1: Information Extraction (Poster)
Conference Room: Frontenac Ballroom and Queen's Quay
Conference Time: July 10, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 10, Poster Session 1 (15:00-16:30 UTC)
Keywords:
knowledge base construction
TLDR:
High-quality and high-coverage rule sets are imperative to the success of Neuro-Symbolic Knowledge Graph Completion (NS-KGC) models, because they form the basis of all symbolic inferences. Recent literature builds neural models for generating rule sets, however, preliminary experiments show that the...
You can open the
#paper-P5824
channel in a separate window.
Abstract:
High-quality and high-coverage rule sets are imperative to the success of Neuro-Symbolic Knowledge Graph Completion (NS-KGC) models, because they form the basis of all symbolic inferences. Recent literature builds neural models for generating rule sets, however, preliminary experiments show that they struggle with maintaining high coverage. In this work, we suggest three simple augmentations to existing rule sets: (1) transforming rules to their abductive forms, (2) generating equivalent rules that use inverse forms of constituent relations and (3) random walks that propose new rules. Finally, we prune potentially low quality rules. Experiments over four datasets and five ruleset-baseline settings suggest that these simple augmentations consistently improve results, and obtain up to 7.1 pt MRR and 8.5 pt Hits@1 gains over using rules without augmentations.