How poor is the stimulus? Evaluating hierarchical generalization in neural networks trained on child-directed speech

Aditya Yedetore, Tal Linzen, Robert Frank, R. Thomas McCoy

Main: Linguistic Theories, Cognitive Modeling, and Psycholinguistics Main-poster Paper

Poster Session 4: Linguistic Theories, Cognitive Modeling, and Psycholinguistics (Poster)
Conference Room: Frontenac Ballroom and Queen's Quay
Conference Time: July 11, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 11, Poster Session 4 (15:00-16:30 UTC)
Keywords: cognitive modeling
TLDR: When acquiring syntax, children consistently choose hierarchical rules over competing non-hierarchical possibilities. Is this preference due to a learning bias for hierarchical structure, or due to more general biases that interact with hierarchical cues in children's linguistic input? We explore th...
You can open the #paper-P5826 channel in a separate window.
Abstract: When acquiring syntax, children consistently choose hierarchical rules over competing non-hierarchical possibilities. Is this preference due to a learning bias for hierarchical structure, or due to more general biases that interact with hierarchical cues in children's linguistic input? We explore these possibilities by training LSTMs and Transformers - two types of neural networks without a hierarchical bias - on data similar in quantity and content to children's linguistic input: text from the CHILDES corpus. We then evaluate what these models have learned about English yes/no questions, a phenomenon for which hierarchical structure is crucial. We find that, though they perform well at capturing the surface statistics of child-directed speech (as measured by perplexity), both model types generalize in a way more consistent with an incorrect linear rule than the correct hierarchical rule. These results suggest that human-like generalization from text alone requires stronger biases than the general sequence-processing biases of standard neural network architectures.