Visually-augmented pretrained language models for NLP tasks without images

Hangyu Guo, Kun Zhou, Wayne Xin Zhao, Qinyu Zhang, Ji-Rong Wen

Main: Language Grounding to Vision, Robotics, and Beyond Main-oral Paper

Session 2: Language Grounding to Vision, Robotics, and Beyond (Oral)
Conference Room: Pier 4&5
Conference Time: July 10, 14:00-15:30 (EDT) (America/Toronto)
Global Time: July 10, Session 2 (18:00-19:30 UTC)
Keywords: multimodality
TLDR: Although pre-trained language models~(PLMs) have shown impressive performance by text-only self-supervised training, they are found lack of visual semantics or commonsense. Existing solutions often rely on explicit images for visual knowledge augmentation (requiring time-consuming retrieval or gener...
You can open the #paper-P786 channel in a separate window.
Abstract: Although pre-trained language models~(PLMs) have shown impressive performance by text-only self-supervised training, they are found lack of visual semantics or commonsense. Existing solutions often rely on explicit images for visual knowledge augmentation (requiring time-consuming retrieval or generation), and they also conduct the augmentation for the whole input text, without considering whether it is actually needed in specific inputs or tasks. To address these issues, we propose a novel **V**isually-**A**ugmented fine-tuning approach that can be generally applied to various PLMs or NLP tasks, **W**ithout using any retrieved or generated **I**mages, namely **VAWI**. Experimental results show that our approach can consistently improve the performance of BERT, RoBERTa, BART, and T5 at different scales, and outperform several competitive baselines on ten tasks. Our codes and data are publicly available at https://github.com/RUCAIBox/VAWI.