Deriving Language Models from Masked Language Models
Lucas Torroba Hennigen, Yoon Kim
Main: Machine Learning for NLP Main-poster Paper
Poster Session 7: Machine Learning for NLP (Poster)
Conference Room: Frontenac Ballroom and Queen's Quay
Conference Time: July 12, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 12, Poster Session 7 (15:00-16:30 UTC)
Keywords:
generative models, graphical models
TLDR:
Masked language models (MLM) do not explicitly define a distribution over language, i.e., they are not language models per se. However, recent work has implicitly treated them as such for the purposes of generation and scoring. This paper studies methods for deriving explicit joint distributions fro...
You can open the
#paper-P957
channel in a separate window.
Abstract:
Masked language models (MLM) do not explicitly define a distribution over language, i.e., they are not language models per se. However, recent work has implicitly treated them as such for the purposes of generation and scoring. This paper studies methods for deriving explicit joint distributions from MLMs, focusing on distributions over two tokens, which makes it possible to calculate exact distributional properties. We find that an approach based on identifying joints whose conditionals are closest to those of the MLM works well and outperforms existing Markov random field-based approaches. We further find that this derived model's conditionals can even occasionally outperform the original MLM's conditionals.