[SRW] Semantic Accuracy in Natural Language Generation: A Thesis Proposal

Patricia Schmidtova

Student Research Workshop Srw Paper

Session 6: Student Research Workshop (Poster)
Conference Room: Frontenac Ballroom and Queen's Quay
Conference Time: July 12, 09:00-10:30 (EDT) (America/Toronto)
Global Time: July 12, Session 6 (13:00-14:30 UTC)
TLDR: With the fast-growing popularity of current large pre-trained language models (LLMs), it is necessary to dedicate efforts to making them more reliable. In this thesis proposal, we aim to improve the reliability of natural language generation systems (NLG) by researching the semantic accuracy of thei...
You can open the #paper-S139 channel in a separate window.
Abstract: With the fast-growing popularity of current large pre-trained language models (LLMs), it is necessary to dedicate efforts to making them more reliable. In this thesis proposal, we aim to improve the reliability of natural language generation systems (NLG) by researching the semantic accuracy of their outputs. We look at this problem from the outside (evaluation) and from the inside (interpretability). We propose a novel method for evaluating semantic accuracy and discuss the importance of working towards a unified and objective benchmark for NLG metrics. We also review interpretability approaches which could help us pinpoint the sources of inaccuracies within the models and explore potential mitigation strategies.