mCPT at SemEval-2023 Task 3: Multilingual Label-Aware Contrastive Pre-Training of Transformers for Few- and Zero-shot Framing Detection

Markus Reiter-Haas, Alexander Ertl, Kevin Innerhofer, Elisabeth Lex

The 17th International Workshop on Semantic Evaluation (SemEval-2023) Task 3: detecting the category, the framing, and the persuasion techniques in online news in a multi-lingual setup Paper

TLDR: This paper presents the winning system for the zero-shot Spanish framing detection task, which also achieves competitive places in eight additional languages. The challenge of the framing detection task lies in identifying a set of 14 frames when only a few or zero samples are available, i.e., a mul
You can open the #paper-SemEval_146 channel in a separate window.
Abstract: This paper presents the winning system for the zero-shot Spanish framing detection task, which also achieves competitive places in eight additional languages. The challenge of the framing detection task lies in identifying a set of 14 frames when only a few or zero samples are available, i.e., a multilingual multi-label few- or zero-shot setting. Our developed solution employs a pre-training procedure based on multilingual Transformers using a label-aware contrastive loss function. In addition to describing the system, we perform an embedding space analysis and ablation study to demonstrate how our pre-training procedure supports framing detection to advance computational framing analysis.