LRL_NC at SemEval-2023 Task 4: The Touche23-George-boole Approach for Multi-Label Classification of Human-Values behind Arguments

Kushagri Tandon, Niladri Chatterjee

The 17th International Workshop on Semantic Evaluation (SemEval-2023) Task 4: valueeval: identification of human values behind arguments Paper

TLDR: The task ValueEval aims at assigning a sub- set of possible human value categories under- lying a given argument. Values behind argu- ments are often determinants to evaluate the relevance and importance of decisions in eth- ical sense, thereby making them essential for argument mining. The work pre
You can open the #paper-SemEval_22 channel in a separate window.
Abstract: The task ValueEval aims at assigning a sub- set of possible human value categories under- lying a given argument. Values behind argu- ments are often determinants to evaluate the relevance and importance of decisions in eth- ical sense, thereby making them essential for argument mining. The work presented here proposes two systems for the same. Both sys- tems use RoBERTa to encode sentences in each document. System1 makes use of features ob- tained from training models for two auxiliary tasks, whereas System2 combines RoBERTa with topic modeling to get sentence represen- tation. These features are used by a classifi- cation head to generate predictions. System1 secured the rank 22 in the official task rank- ing, achieving the macro F1-score 0.46 on the main dataset. System2 was not a part of official evaluation. Subsequent experiments achieved highest (among the proposed systems) macro F1-scores of 0.48 (System2), 0.31 (ablation on System1) and 0.33 (ablation on System1) on the main dataset, the Nahj al-Balagha dataset, and the New York Times dataset.