PingAnLifeInsurance at SemEval-2023 Task 10: Using Multi-Task Learning to Better Detect Online Sexism
Mengyuan Zhou
The 17th International Workshop on Semantic Evaluation (SemEval-2023) Task 10: towards explainable detection of online sexism Paper
TLDR:
This paper describes our system used in the SemEval-2023 Task 10: Towards ExplainableDetection of Online Sexism (Kirk et al., 2023). The harmful effects of sexism on the internet have impacted both men and women, yet current research lacks a fine-grained classification of sexist content. The task in
You can open the
#paper-SemEval_334
channel in a separate window.
Abstract:
This paper describes our system used in the SemEval-2023 Task 10: Towards ExplainableDetection of Online Sexism (Kirk et al., 2023). The harmful effects of sexism on the internet have impacted both men and women, yet current research lacks a fine-grained classification of sexist content. The task involves three hierarchical sub-tasks, which we addressed by employing a multitask-learning framework. To further enhance our system's performance, we pre-trained the roberta-large (Liu et al., 2019b) and deberta-v3-large (He et al., 2021) models on two million unlabeled data, resulting in significant improvements on sub-tasks A and C. In addition, the multitask-learning approach boosted the performance of our models on subtasks A and B. Our system exhibits promising results in achieving explainable detection of online sexism, attaining a test f1-score of 0.8746 on sub-task A (ranking 1st on the leaderboard), and ranking 5th on sub-tasks B and C.