YNU-HPCC at WASSA 2023: Using Text-Mixed Data Augmentation for Emotion Classification on Code-Mixed Text Message
Xuqiao Ran, You Zhang, Jin Wang, Dan Xu, Xuejie Zhang
The 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis Long Paper
TLDR:
Emotion classification on code-mixed texts has been widely used in real-world applications. In this paper, we build a system that participates in the WASSA 2023 Shared Task 2 for emotion classification on code-mixed text messages from Roman Urdu and English. The main goal of the proposed method is t
You can open the
#paper-WASSA_205
channel in a separate window.
Abstract:
Emotion classification on code-mixed texts has been widely used in real-world applications. In this paper, we build a system that participates in the WASSA 2023 Shared Task 2 for emotion classification on code-mixed text messages from Roman Urdu and English. The main goal of the proposed method is to adopt a text-mixed data augmentation for robust code-mixed text representation. We mix texts with both multi-label (track 1) and multi-class (track 2) annotations in a unified multilingual pre-trained model, i.e., XLM-RoBERTa, for both subtasks. Our results show that the proposed text-mixed method performs competitively, ranking first in both tracks, achieving an average Macro F1 score of 0.9782 on the multi-label track and of 0.9329 on the multi-class track.